Etiquetas

Estadística (17) 2Bachillerato (14) bachillerato (14) 4eso (13) probabilidad (10) 1bachillerato (9) CoVid19 (8) 2eso (7) economía (7) elecciones (6) 3eso (5) democracia (5) desigualdad (5) desviación típica (5) física (5) Porcentajes (4) ciencia (4) ley d'Hont (4) media (4) encuesta (3) error (3) física teórica (3) geometría (3) gráficas (3) relatividad (3) sucesión (3) Darwin (2) Examen (2) Madrid (2) astronomía (2) clase social (2) educación (2) exponencial (2) exposición (2) fisica cuantica (2) funciones (2) gráfica (2) historia (2) lotería (2) matemáticas CCSS (2) politica (2) proporcionalidad (2) sesgo (2) Alejandría. biblioteca (1) Bayes (1) Constitución (1) CosmoCaixa (1) Crack 29 (1) Gagarin (1) Gini (1) Hipatia (1) Hoover (1) Noether (1) Número irracional (1) PAU (1) Porcentajes encadenados (1) Queen (1) Renta per capita (1) Tales de Mileto (1) actividad (1) agujero negro (1) algoritmos (1) calendario (1) cambio climático (1) diagrama de barras (1) diagrama de sectores (1) día del libro (1) ecología (1) ecuaciones (1) elipse (1) evolución (1) extremo relativo (1) fracción (1) frecuencia (1) globalización (1) gravitación (1) gregoriano (1) hipercubo (1) impuesto (1) inecuaciones (1) inicio (1) interpolación (1) juliano (1) matemáticas financieras (1) media aritmética (1) media geométrica (1) mediana (1) meteorología (1) museo (1) máximo (1) mínimo (1) música (1) número normal (1) número trascendente (1) ondas (1) ondas gravitatorias (1) paradoja (1) pobreza (1) polinomios (1) política fiscal (1) porcentaje (1) profecía autocumplida (1) punto de inflexión (1) rango (1) riqueza (1) salario (1) simetría (1) solución (1) tabla (1) taller (1) talleres (1) valor medio (1) álgebra (1)

viernes, 28 de junio de 2013

Santoral

A pesar de que la mayor parte de la tragedia ocurriese hace unos 1600 años, sí es una información de actualidad lo contado hoy. Ayer 27 de junio vi en la agenda que era el día dedicado al santo Cirilo de Alejandría. Este santo tiene a bien en su curriculum estar involucrado en el asesinato de Hipatia y la destrucción de la Biblioteca de Alejandría de la que Hipatia fue su última directora. Esta señora fue también filósofa de la corriente neoplatónica, profesora de matemáticas e investigó sobre las formas cónicas. Quizás fue la diseñadora, junto a su padre, de los primeros astrolabios.

Por todo eso, y lo que no conocemos de las obras clásicas tras la destrucción de la Biblioteca, quiero tener un recuerdo para Hipatia y la Biblioteca.

viernes, 10 de mayo de 2013

FINDE científico

En vista de cómo está la situación de la ciencia y la tecnología en España, quizás alguien espere en esta entrada un artículo catastrófico sobre el futuro de la ciencia. Pero no, es más sencillo. Se trata de una serie e actividades de carácter científico-tecnológico que se realizan en el Museo de Ciencia y Tecnología en Madrid durante el próximo fin de semana del 11 y 12 de mayo.

Si alguien pasa por Madrid que lo mir, antes de que toda la Ciencia española se pueda ver solo en el museo.

Finde científico

jueves, 9 de mayo de 2013

El sesgo, ¿es el nombre de un ogro?

Una nueva entrada sobre ... ¡estadística! ¡Qué sorpresa! En este caso tratamos con algo de nombre casi tan oscuro y feo como su significado: el sesgo estadístico.

En muchas ocasiones es necesario seleccionar unos cuántos datos  en un estudio estadístico, pero en cualquier caso esta selección debe ser explicita, objetiva y  estar justificada. Si esta selección no está bien hecha o no es conocida puede introducir "preferencias" que desvirtúe las conclusiones.

En ocasiones el sesgo es simplemente un error, una negligencia inconsciente como tantas otras. A veces, es una selección consciente que depende de la conclusión que se quiera "demostrar" y esta de quién pague el estudio estadístico, algo parecido a un delito de lesa matemática. Por desgracia, no siempre es fácil distinguir un caso del otro.

Veamos primero un ejemplo ya tradicional con resultado conocido. La primera encuesta electoral telefónica de la historia se realizó en 1933 en EEUU. En esa encuesta se predecía una victoria del candidato republicano Hoover (candidato a la reelección), sin embargo ganó Roosevelt de manera aplastante, lo que conllevo la aplicación de la política económica del New Deal para luchar con la depresión del 29, contraria a la realizada hasta ese momento por el presidente Hoover. ¿Hay alguna explicación para este error? Sí, se produjo un claro sesgo, se pregunto mayoritariamente a votantes del partido republicano. Y como pista insisto en que la encuesta fue telefónica.

Respuesta: Muy fácil. Estamos en 1933, tras 4 años de Gran Depresión y medidas económicas equivocadas (estilo austericidio). Los teléfonos no eran baratos, por tanto, el hacer una encuesta telefónica en esa época era introducir un sesgo basado en la clase social a la que pertenecía el encuestado. No quedaba reflejada la opinión del 100% de la población, sino solo de los más ricos.

Ahora veremos un caso más reciente. En este artículo La escuela concertada refuerza los recursos por alumno en la pública se usan datos del ministerio de educación, sin facilitar las fuentes por desgracia, para concluir que las autonomías en las que el porcentaje de colegios privados y concertados es mayor  coinciden con las que gastan más en educación pública. Curiosamente para demostrar esto se escogen datos solo de 10 autonomías, y no de las 17 ¿Por qué? No parece que haya ninguna explicación.

En términos estadísticos lo que pretende probar esto es que existe una correlación entre el porcentaje en concertada y la inversión en pública, es decir a mayor porcentaje de una, mayor inversión en la otra. Si se representase en una gráfica veríamos una línea recta que sube de izquierda a derecha.

Si representamos los datos de las 10 autonomías escogidas se una línea claramente ascendente apoyando la conclusión mostrada en el titular.
 Pero, curiosamente si seleccionamos los datos de las otras 7 autonomías (algunas de tanto peso como Madrid o Cataluña) obtenemos una gráfica que parece indicar lo contrario.
Entonces, ¿a qué carta quedarnos? Ninguna de las dos parece concluyente. ¿No hay ninguna herramienta estadística que nos permita saber si algo es concluyente antes de hacer gráficas? Claro que sí, faltaría más. Se llama coeficiente de correlación lineal . Como se ve en la explicación de Wikipedia este número se mueve entre -1 y +1:
  • +1, entonces  la correlación en torno a una recta creciente.
  • -1, entonces la correlación en torno a una recta decreciente.
  • 0, no es posible llegar a ninguna conclusión. 
En este caso, los valores son:
  • Con todas las autonomías: 0,48
  • Sólo las seleccionadas por los autores del artículo: 0,84
  • Las demás autonomías: -0,86
Aquí hay una tabla en donde se clasifican lo seguro de una correlación a partir del valor este valor. Según esa tabla al conjunto de las autonomías le correspondería una correlación media, lo que parece que apoya, aunque sea parcialmente, la conclusión del artículo. Pero no olvidemos que en este escenario todas las autonomías entran con el mismo peso y quizás deberían tener más importancia las más pobladas (como Madrid o Cataluña) que están en el conjunto de las comunidades eliminadas del estudio.

Lo más importante: si queremos buscar la verdad no hay que colocar la conclusión delante de la investigación.

Hoja de cálculo con los datos, cálculos y gráficas: 

Fuentes de los datos usados:




martes, 23 de abril de 2013

Enigmas del Día del libro

Hoy he hecho una pregunta a mis alumnos y alumnas con éxito desigual. la pregunta es sencilla, pero a la vez embrollada. El truco está en saber exactamente que quieren decir las palabras:

Hoy es el día del libro porque en tal fecha como hoy, pero de hace unos cuantos años, exactamente el 23 de abril de 1616 murieron Cervantes y Shakespeare. Sin embargo, ambos genios murieron en días distintos con más de una semana de separación. ¿Cómo es posible? 

En una semana despejo la incógnita, para los que no sepan ya la respuesta.

Como he dicho a mis alumnos: leed algo hoy por ser el día del libro, pero sobre todo no dejéis de leer mañana porque no sea el día del libro.



Ya es hora de responder algo. ¡Cómo pasa el tiempo! Hora tras hora, día tras día, semana tras semana; aunque siempre es igual, los días son un poco distintos según se acerca el verano o el invierno pero al final todo se repite en el ciclo anual. Sin embargo frente  a este cambio monótono y cíclico los  seres humanos nos vemos en la necesidad de etiquetar el tiempo, empezando por los días. Estas etiquetas son las fechas presentes en los calendarios.

Los distintos calendarios abundan. Cada civilización ha tenido el suyo, y la nuestra varios. En el s. XVI se detecto que el calendario juliano, vigente desde los tiempos de julio Cesar, acumulaba un desfase respecto al año "real" (año solar)  de tal manera que el comienzo de la primavera ya no coincidía con el 21 de marzo, por eso se sustituyo por otro calendario más preciso llamado gregoriano, impulsado por el Papa Gregorio XIII. Este calendario fue adoptado inmediatamente por los países católicos (como España), pero tardó varios años en imponerse en otros países partidarios de la reforma o del rito ortodoxo. Por eso, el día que murió Cervantes en España con fecha 23 de abril del año de nuestro Señor de 1616 era 13 de abril en Inglaterra y aún faltaban 10 días para que Shakespeare muriese en Londres. Por tanto, ambos escritores murieron en la misma fecha, pero en distintos días.

Un par de detalles sobre el tiempo. El año solar dura exactamente (en la medida de nuestros conocimientos actuales)  365,242 190 402 días solares medios, o sea, 365 d 5 h 48 m 45.25 s.

El año calculado para establecer el calendario  juliano duraba 365,25 días solares, o sea, 365 días y 6 h. Por eso, en el calendario juliano se añadía un día cada cuatro años (el año bisiesto) . Esta corrección no fue suficiente para mantener los días en su sitio durante 15 siglos.

El año solar gregoriano dura 365,2425 días solares, si convertimos este número decimal en fracciones se verá muy claro los trucos del calendario gregoriano para mantenernos dentro del redil del tiempo.

365,2425 = 365 + 1 4 1 100 + 1 400 365,2425 = 365 + 1 

Los años duran 365 días, pero cada 4 años añadimos un día (+1/4), no lo añadimos si el año acaba en 00 (-1/100), pero sí lo añadimos si es múltiplo de 400 (+1/400) . Por eso el año 2000 fue bisiesto, aunque el año 1900 no lo fue.

Con estos cálculos (que no coinciden con el año solar, la diferencia es de 0,000310598 días) habrá que empezar a preocuparse por el desfase de un día dentro de 3.300 años.

martes, 16 de abril de 2013

CosmoCaixa: Fin de semana matemático

Para mis alumnos y alumnas en particular, y en general para todo el público que vaya a pasar por Madrid este fin de semana.

A partir del viernes 19 de abril CosmoCaixa Madrid celebra Fin de semana matemático: talleres, exposiciones, ...
En el siguiente enlace podréis encontrar la programación del evento. 
 Aprovechad antes de que se lleven CosmoCaixa este 31 de diciembre (fum, fum, fum) por recortes y apreturas diversas. No os confiéis demasiado, la condena a la desaparición ya ha tenido una moratoria, inicialmente CosmoCaixa se iba a ir de Madrid el próximo mes de julio (realmente próximo).

Siempre tendré la sensación de no haber ido el número suficiente de veces.

 En todo caso, una pena la desaparición de CosmoCaixa.  O tempora, o mores!

miércoles, 10 de abril de 2013

Qué poco se habla de cómo se reparte el dinero

En un artículo publicado la última semana en 20 minutos titulado El nivel de riqueza de cada madrileño baja en 1.559 euros de media desde el inicio de la crisis se puede ver como se tratan distintas magnitudes estadísticas.

En primer lugar se habla de la media, en este caso el PIB per capita madrileño en retroceso desde el comienzo de la crisis y su comparación con esta misma magnitud en otras regiones. La media suele ser un tema central en cualquier artículo en el que se usen estudios estadísticos. La media nos dice a cuánto tocaríamos si la riqueza de la región se repartiese equitativamente. Pero, ya sabemos que no es así.

Por otro lado en este artículo se consulta a un catedrático de economía que habla precisamente de la desigualdad en el reparto y su  aumento según avanza la crisis. Pero aunque se habla de ello, no se ofrece ningún dato numérico ni se compara con nada. Aún así, es mucho más de lo que suele aparecer en la prensa ya que lo habitual es la ausencia de parámetros que informan de la desigualdad en el reparto.

Quizás será porque el dinero siempre ha sido muy difícil de repartir.

¿Qué parámetros hay a nuestra disposición para medir la desigualdad en estadística? Es cierto que la desviación típica quizás sea demasiado abstracta para el común de los mortales, pero podría ser suficientemente intuitivo dar la mediana o el percentil 99 (esto tiene que ver con las famosas pancartas que aparecieron en la manifestaciones de EEUU "we are 99%") o el percentil 90 comparado con el percentil 10 ( p 90 p 10 p_90 over p_10 ) o el porcentaje de PIB en manos del 5% de la población más rico o el coeficiente de Gini. Será por opciones.

Un ejemplo del uso de alguno de estos medidores de desigualdad esta en "La doctrina del Shock" de Naomi Klein. En el último capítulo se dice que el 10% de la población más rica de Argentina pasó de controlar 12 veces más dinero que el 10% más pobre en 1970, a acumular 43 veces más dinero en 2002. Es decir,
p 90 p 10 ( 1970 ) = 12 p 90 p 10 ( 2002 ) = 43 p_90 over p_10 (1970) = 12 newline p_90 over p_10 (2002) = 43

En definitiva, incluso en artículos bienintencionados que pretenden dar algo más de información que otros, es difícil encontrar una visión completa desde el punto de vista matemático, más allá de la miopía de los valores medios.

jueves, 21 de marzo de 2013

La estadística, esa arma "letal"

“Hay tres clases de mentiras: La mentira, la maldita mentira y las estadísticas.”
—Mark Twain
  La estadística tiene mala fama porque gente con pocos escrúpulos y buenos conocimientos matemáticos engañan con trucos y mal uso de las matemáticas a personas con menos conocimientos de los necesarios para defenderse, mediante información incompleta o engañosa.

Al fin y al cabo, la estadística es una herramienta. Aprendamos a defendernos un poco de los ataques.

Uno de los trucos más básicos está en la presentación gráfica de los datos. Por ejemplo, estas dos gráficas representan los mismos datos, pero ¿a qué en la gráfica de la izquierda parece que la empresa ha tenido unos beneficios espectaculares el último año? 

Extraído de "El arte de presentar".
Más ejemplos consisten en la falta de ficha técnica en las encuestas de algún periódico, o el uso y abuso de magnitudes medias con ausencia de medidas de la dispersión de los datos (medida de la desigualdad).

Un caso impactante lo he leído en el libro de Naomi Klein "La doctrina del Shock" en el que se expone una carta abierta escrita por un exempleado del FMI llamado Davison L. Budhoo al director de esta organización. En el libro se dice lo siguiente sobre la carta:

"Budhoo exponía su argumento y acusaba al Fondo de emplear las estadísticas como armas «letales». Proporcionaba datos exhaustivos de cómo, siendo él un empleado del Fondo a mediados de los años ochenta, había participado en lo que se podía considerar como «negligencia estadística» para exagerar las cifras recogidas en los informes del FMI sobre Trinidad y Tobago, un país de gran riqueza petrolífera, con el único fin de dar la apariencia de que su economía era mucho menos estable de lo que en realidad era. Budhoo señalaba que el FMI había aumentado (hasta más del doble) la magnitud de una estadística fundamental que medía los costes laborales en el país para que éste pareciera tener un nivel de productividad pésimo, aun cuando, según decía, el Fondo disponía de la información correcta."

Buscad otros ejemplos de mal uso de la estadística y colgadlos en los comentarios.