miércoles, 10 de abril de 2013

Qué poco se habla de cómo se reparte el dinero

En un artículo publicado la última semana en 20 minutos titulado El nivel de riqueza de cada madrileño baja en 1.559 euros de media desde el inicio de la crisis se puede ver como se tratan distintas magnitudes estadísticas.

En primer lugar se habla de la media, en este caso el PIB per capita madrileño en retroceso desde el comienzo de la crisis y su comparación con esta misma magnitud en otras regiones. La media suele ser un tema central en cualquier artículo en el que se usen estudios estadísticos. La media nos dice a cuánto tocaríamos si la riqueza de la región se repartiese equitativamente. Pero, ya sabemos que no es así.

Por otro lado en este artículo se consulta a un catedrático de economía que habla precisamente de la desigualdad en el reparto y su  aumento según avanza la crisis. Pero aunque se habla de ello, no se ofrece ningún dato numérico ni se compara con nada. Aún así, es mucho más de lo que suele aparecer en la prensa ya que lo habitual es la ausencia de parámetros que informan de la desigualdad en el reparto.

Quizás será porque el dinero siempre ha sido muy difícil de repartir.

¿Qué parámetros hay a nuestra disposición para medir la desigualdad en estadística? Es cierto que la desviación típica quizás sea demasiado abstracta para el común de los mortales, pero podría ser suficientemente intuitivo dar la mediana o el percentil 99 (esto tiene que ver con las famosas pancartas que aparecieron en la manifestaciones de EEUU "we are 99%") o el percentil 90 comparado con el percentil 10 ( p 90 p 10 p_90 over p_10 ) o el porcentaje de PIB en manos del 5% de la población más rico o el coeficiente de Gini. Será por opciones.

Un ejemplo del uso de alguno de estos medidores de desigualdad esta en "La doctrina del Shock" de Naomi Klein. En el último capítulo se dice que el 10% de la población más rica de Argentina pasó de controlar 12 veces más dinero que el 10% más pobre en 1970, a acumular 43 veces más dinero en 2002. Es decir,
p 90 p 10 ( 1970 ) = 12 p 90 p 10 ( 2002 ) = 43 p_90 over p_10 (1970) = 12 newline p_90 over p_10 (2002) = 43

En definitiva, incluso en artículos bienintencionados que pretenden dar algo más de información que otros, es difícil encontrar una visión completa desde el punto de vista matemático, más allá de la miopía de los valores medios.

No hay comentarios:

Publicar un comentario